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Numerical Analysis of H-Plane Waveguide
Junctions by Combination of Finite
and Boundary Elements

KIYOSHI ISE AND MASANORI KOSHIBA, SENIOR MEMBER, IEEE

Abstract —A new numerical method is formulated for the analysis of
H-plane waveguide junctions with arbitrary cross sections. The junctions
are loaded with arbitrarily shaped dielectric or ferrite. The method is a
combination of the finite-element method and the boundary-element
method where the finite-element method and the boundary-element method
are applied to the regions with and without dielectric or ferrite, respec-
tively. To show the validity and usefulness of the method, a lossy dielectric
post and a ferrite slab in a rectangular waveguide are investigated in detail,
and the computed results are compared with earlier theoretical and experi-

mental results.

SIGNIFICANT number of studies on scattering by
A the obstacles in a waveguide have been reported for
many years. Marcuvitz’s Waveguide Handbook [1] de-
scribes the equivalent circuit parameters for inductive ob-
stacles and dielectric posts in a rectangular waveguide.
Leviatan, Li et al. [2], [3], and Auda and Harrington [4]
have studied inductive posts and diaphragms in a rectan-
gular waveguide by the moment method. Vahldieck er al.
[5] have given the design for a metal insert filter by the
method of field expansion into eigenmodes.

Nielsen {6] by the modal expansion method, Araneta [7]
by adding one more terms in the variational expressions
given by Schwinger, and Sahalos and Vafiadis [8] by a
method similar to Nielsen’s [6] using not a rectangular
interaction region but a circular one have dealt with the
discontinuity problem of a circular cylindrical dielectric
post centered in a rectangular waveguide. Hsu and Auda
[9] and Leviatan and Sheaffer [10] have by the moment
method given analyses of homogeneous dielectric posts of
arbitrary shape, size, location, and number, lossy as well as
lossless in a rectangular waveguide. Arndt ef al. [11], [12]
have designed dielectric-slab-filled waveguide phase shifters
by the method of field expansion into eigenmodes.

Davies [13] has by the modal expansion method pro-
posed an analysis for a symmetrical waveguide junction
circulator with a circular ferrite post. Okamoto [14] has by
the method based on integral equations analyzed wave-
guide junctions with arbitrarily shaped ferrite posts. Uher
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et al. [15] have designed ferrite-slab-loaded waveguide non-
reciprocal phase shifters by the method of field expansion
into eigenmodes.

Recently, Koshiba et al. [16], [17], Webb and Parihar
[18], and Lee and Cendes [19] have by the finite-element
method (FEM) analysed the H-plane waveguide junctions.
The FEM is very useful for arbitrarily shaped discontinui-
ties including inhomogeneous and anisotropic media.
However, it requires large computer memory and long
computation time to solve the final matrix equation. More
recently, Kagami and Fukai [20]. and Koshiba and Suzuki
[21] have by the boundary-element method (BEM) analysed
H-plane waveguide junctions. The BEM is one of the
“boundary” type methods based on the integral equation
method. It is therefore possible to reduce the matrix di- .
mension and to use computer memory more economically
compared with a “domain” type method, such as the
FEM. However, the BEM cannot be effectively applied to
a problem involving inhomogeneous and anisotropic media.

This paper presents a new combination of numerical
methods for the solution of scattering of H-plane wave-
guide junctions with arbitrary cross sections where jurc-
tions are allowed to be loaded with dielectric or ferrite of
arbitrary shape, size, and location, lossy as well as lossless.
This approach is a combination of the finite and boundary
element methods (CFBEM). The waveguide junction is
divided into two regions. One is the inhomogeneous region
with dielectric or ferrite, and the other is the homogeneous
region without dielectric or ferrite. The finite-element and
boundary-element methods are applied to the inhomoge-
neous and homogeneous regions, respectively. The finite-
element can be combined with the boundary-element on
the common nodal points because these two methods are
discretized in the same way. Also, analytical solutions are
used for the uniform waveguides connected to the junc-
tions.

Discontinuity problems with a large homogeneous re-
gion or with variations of the location of an inhomoge-
neous region can be efficiently treated by the CFBEM, To
show the validity and usefulness of this method, a lossy
dielectric post and a ferrite slab in a rectangular waveguide
are investigated in detail, and the computed results are
compared with earlier theoretical and experimental results.
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Fig. 1. H-plane waveguide junction.

Mei [22] has proposed a unimoment method in which
the finite-difference or finite-element method is used to-
gether with integral equations or harmonic expansions.
However, it seems that this method has not been fully
applied to waveguide junctions with inhomogeneous and
anisotropic media.

II. Basic EQUATIONS

We consider the waveguide junction shown in Fig. 1.
Here the boundary T, connects the discontinuities to the
rectangular waveguide i(i =1,2), 4, is the width of the
waveguide for the H-plane junction, I'J encloses the dielec-
tric or ferrite region {2, the region @, is the one sur-
rounded by T, I}, I{{, and the short-circuit boundary T,
and the region surrounded by I, I’,, and I}, encloses the
waveguide discontinuities completely. Besides, the dielec-
tric or ferrite is assumed to be of full height and to be
uniform along the z axis.

For a dc magnetic field H; in the z direction, the
permeability tensor for ferrite takes on the form [17]

g —je 0
[#]l=poljxk p O (1)
0 0 1

where

(@ + jwa)w,

=1+ 2
# (wo+ jwa)z— w? @

wWw

T ant o) ®)
wo=7vH, (4)
m=YM, /I (%)
a=vAH2w. (6)

Here w is the angular frequency, p, is the permeability of
free space, M, is the saturation magnetization, AH is the
resonance linewidth, and y is the gyromagnetic ratio. A
time dependence exp (jwi) is assumed.

Considering the excitation by the dominant TE,, mode,
we have the following basic equations for the field E,, H,,
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Fig. 2. Quadratic line element.
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and H, because the fields do not vary with the z axis [17]:

aany - a;ix = jweeE, (7)
1 JE, 0E,
N Py {_M797+]K 9 } @)
H - 1 _3_E£+ ~ JE,
Y jepe(p? =) {” ax 4y } ©)
where

(10)

Here ¢, is the permittivity of free space and € is the
relative permittivity.

e=¢— je'.

III. MATHEMATICAL FORMULATION

A. Boundary-Element Approach for 2,

For e=1, p=1, and «=0 in the region Q,, from
(7)—(9) we obtain the following Helmholtz equation:

82 2
US—— + —_
( x> 9y?
where ¢ is E, and k2 = w%p,.
Applying the boundary-element method with the qua-

dratic line element shown in Fig. 2 to the region Q,, the
following matrix equation is obtained [20], [21]:

{¢}
{$}5
{6}5
{6}

{v}{
{v}5
{v}5
(¢}

where  is dE, /dn, ie., the outward normal derivative of
E,, and the subscripts 1, 2, ¢, and 0 denote the quantities
corresponding to the boundaries I'y, T,, I§, and T, in
Fig. 1, respectively.

¢+kip=0 (11)

(7], [H], [H]ly [H]

:[[GL [G]z [G]O’ [G]O] (12)

B. Finite-Element Approach for Q,

Dividing the region @, into a number of element subdo-
mains Q,’s as shown in Fig. 3, using a Galerkin procedure
on (7) over the element Q,, and considering the contribu-
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tion of all elements, we obtain the following matrix equa-
tion [16]-[19]:

[41{¢}” =[Blo(¥}0o (13)

S [e((N (VT ()N

1% [

e (NN = (N N)T)

~ k3N Y{N)T| dxdy (14)
=¥ [{N}{N}Tar (15)
where {N} is the shape function vector, {N,} =

d{N}/9x, {N,}=d{N}/dy, T denotes a transpose,
[].dxdy is carried over the element subdomain &,, [, dT
is carried over the element contour I'/ on I}, and X, and
Y. extend over all elements .’s and the elements related
to I'j, respectively.

Equation (13) may be rewritten as follows:

{[A]O,O/ [A]o»y} (s} =[[Blorw}€,
[4lvoe [Alir ]| (o) 2 {0}

where [A]yq,- - +,[A]y1 are the submatrices of [A4], and
{0} is a null vector. The components of the {¢}§ vector
are the values of the electric field E, at nodal points on the
boundary T, and the components of the {¢}+ vector are
the values of E, at nodal points in the interior region
except the boundary I'J from the region £,.

Eliminating {¢}% from (16), we obtain the following
equation:

[4]o ()0 =
[4]o=

(16)

(17)
(18)

[Blo(¥)}o
[A]O'O"’ [A]O’l’[A]f'll'[A]ro“

C. Analytical Approach for the Waveguides

Assuming that the dominant TE,, mode of unit ampli-
tude is incident from waveguide j(;j=1,2) in Fig. 1,
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=FE.) on [(i=1,2) may be expressed analytically as
[21]
B(x=0, 1)
=28, 1a(0) = Z 5 [ 5} (56”)
Y (x0=0, y§") dys” (19)
where
fim(y®) Wsm may®/d,, m=1,2,3,--- (20)
B =Vki— (mm/d)?, m=1,2,3,--- (21)
and §,, is the Kronecker delta function. |
Equation (19) can be discretized as follows:
{o)!-121.{y}"=0,{/}, (22)
where
{f}.=2{f}, (23)

2], == LW/}, Z/f,m §)

AN(x® =0, ygi>)} dy{P. (24)

Here the components of the { f,,}, vector are the values of
£, (y©) at the nodal points on T,, and £, extends over
the elements related to T

D. Combination of Finite and Boundary Elements

On the short-circuit boundary I}, the electric-field com-
ponent ¢ parallel to it vanishes, so that the following
boundary condition is taken:

{¢}0 = {0} (25)
The continuity conditions of ¢ and its outward normal

derivative ¢ at the interface I'{ between regions £, and
Qp are expressed as

{o}o={0}e (¥}o=—{¥}o onIy (26)

where the minus sign of ¢ originates from the outward
normal direction of the adjacent two regions opposite each
other.

Using (26), (17) may be expressed as

[41o{s}5+[Blot¥]5 = (0}
Considering (25), from (12) we obtain

on Ij,.

(27)

(o}
[[H], [H], [Hlo] {¢}oA
{6}5
(v}
{(v}4
—[1Gli 1G], |Gly |Glo ={0}. (28
[[] [G], [G] [l]{“é{ {0}. (28)
{v}s
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Fig. 4. Dielectric post in a rectangular waveguide.

From (22), (27), and (28) we obtain the following final
matrix equation:

[t fo] [0} ~[z], [0]

o] [l [o] o] -Iz]

[o] ~ [o] [4]y  [0] [0]
(#], [H]: [H]y -[Gl. -[Gl

where [1] is the unit matrix and [0] is the null matrix.

The values of ¢ at nodal points on [, ie., {9}, are
computed from (29), and then ¢(x@ =0, y@) on T, can
be calculated. The solutions on I, allow the determination
of the scattering parameters S, of the TE,, mode as

follows [21]:

Su= [ (x=0. y) [u(y) -1 (30)
0
Slj = 11811/3]1
Sl (x =0, Y () &, i#j (31)
0

IV. NuMEerical ResuLTs

A lossy dielectric post in a rectangular waveguide as
shown in Fig. 4 is investigated first, where d is the width
of the rectangular waveguide and r is the radius of the
cylindrical post.

The equivalent circuit for a post in a rectangular wave-
guide in which only the dominant TE,, mode can propa-
gate unattenuated is the T network shown in Fig. 5, where
Z, is the characteristic impedance of the TE,, mode.

Let S}, and S5 be the reflection and transmission
coefficients of the dominant mode evaluated at the refer-
ence plane T (x =d /2 in Fig. 4), respectively. Then the
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Fig. 5. Equivalent circuit for dielectric post in a rectangular waveguide.

equivalent circuit parameters are determined as follows [2]:

Z, 284,
70— (1—S1’1~S2’1)(1—S{1+S2’1)
2114212 1+S1’1—-S2’1
Z,  1-S,+S84
[ (631
{6}
[O] [0] {¢}(;1/ alj{f}l
[0] (0] 4| 8, {f)
Bl 0 || Y] )
~[6ly —[Gly ]| ¥} (0)
(v}
()

Moreover the equivalent circuit parameters are repre-
sented by the resistances and reactances as follows:

Zy,/Zy=R,+ jX,
(Zu - le)/Zo =R, + jX,

where R, and R, are the normalized shunt and series
resistances, and X, and X, are the normalized shunt and
series reactances, respectively.

Now we take the example given by Leviatan et al. [10],
which computes the equivalent circuit parameters as a
function of €” for a centered lossy post of r/d = 0.05, with
€=40at A/d=14 (A=2a/k,). Two limiting cases, i.c.,
¢’ — 0 and €” — oo, correspond to the ones for the lossless
post and the perfectly conducting post, respectively. Here
a regular polygon with 24 sides, the area of which is equal
to that of the circle, is used instead of the circle.

Figs. 6 and 7 show the normalized shunt and series
resistances versus €”, respectively. Figs. 8 and 9 show the
normalized shunt and series reactances versus ¢”, respec-
tively. Fig. 10 shows the normalized total power P, ie.,
|S11]* +|Sy|?, versus €. Our results and Leviatan’s are
shown by, respectively, the solid and the broken lines in
these figures. Leviatan’s results show the sudden change in
the magnitude of each of the resistances and reactances at
€”=19.5, where post losses appear to have reached a peak,
and at €” =60 their results already approach the ones for
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Fig. 7. Normalized series resistance R, versus €”.

the perfectly conducting post [1], i.e.,
R,=0 R,=0

X,=0.190 X, =—-0.047
1Syl? + 182/ =1.

Moreover, their R, has negative values at 19.5<€” <50
although the resistor R, should never have a negative
resistance [23]. On the other hand, all of our results have
no rapid changes. Some negative values for our R, appear
in Table 1. This is because the total power obtained by the
CFBEM becomes more than unity. Since the energy error
is less than 0.06 percent, computation error seems to cause
negative values for R,. Table I shows that our results reach
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Fig. 9. Normalized series reactance X, versus €”.

the ones for the perfectly conducting post at €’ >10% and
that post losses are the greatest at €’ =18.4.

Marcuvitz’s results [1] for the perfectly conducting post
of the same volume and location as the lossy dielectric post
are compared with the results obtained by the FEM or the
BEM, which are shown in Table [I. Our results agree well
with Marcuvitz’s.

From the fact described above, we may expect that our
results are more reasonable than Leviatan’s [10].

The computer memory and the CPU time required to
analyze a lossy dielectric post in a rectangular waveguide
are shown in Table II1. All results obtained by the CFBEM,
the FEM, and the BEM are fully convergent.
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TABLE 1
NORMALIZED RESISTANCES R,, R,, NORMALIZED REACTANCES X, X,
AND NORMALIZED TOTAL POWER P VERSUS ¢’ (r/d =0.05, A /d =14,

¢ =4.0)

e” Ra Xa Ry X P
0 -0.00003 -3.18718 -0.00014 0.00125 1.00029
2.9 1.70864 -1.53542 0.00082 0.00123 0.76215
3.0 1.70962 -1.47748 0.00086 0.00123 0.75626
3.1 1.70869 -1.42144 0.00089 0.00123 0.75049
11.0 0.86774 -0.00438 0.00347 0.00090 0.52950
12.0 0.80428 0.03123 0.00379 0.00083 0.52022
18.0 0.55411 0.14014 0. 00567 0. 00031 0. 49887
18.4 0.54268 0.14403 0.00579 0. 00027 0. 49881
19.0 0.52637 0.14942 0.00598 0.00021 0.49892
20.0 0.50121 0.15739 0.00628 0.00010 0. 49960
21.0 0.47829 0.16428 0.00658 -0.00002 0.50081
110.0 0.09762 0.23384 0.01831 -0.01649 0.70991
116.0 0.09336 0.23410 0.01833 -0.01742 0.71692
120.0 0.09079 0.23423 0.01832 ~0.01801 0.72130
500.0 0.03692 0.22020 0.0109% -0. 03423 0.85207
1000.90 0.02474 0.21173 0. 00806 -0.03795 0.89332
10000.0 0.00770 0.19709 0.00284 -0.04413 0.96291
100000. 0 0.00233 0. 19091 0.00082 -0. 04669 0.98864
1009000. ¢ 0. 00026 0.19027 -0.00003 -0. 04697 0.99919
4000000.0 0. 00006 0. 19026 -0.00011 -0. 04697 1.00019
10000000.0 0. 00003 0. 19026 -0.00013 -0.04697 1. 00039
1000000090.0 0.00000 0.19026 -0.00014 -0.04697 1. 00051

Second, ferrite-loaded waveguide nonreciprocal phase
shifters are investigated. Nonreciprocal phase shift may be
realized in a rectangular waveguide by placing a ferrite
slab magnetized by a dc magnetic field H, as shown in
Fig. 11. Differential phase shift (A¢ = argS,; —argsS;,)
and low VSWR are important to characterize the nonre-
ciprocal phase shifter, so that phases of the forward (S,,)
and backward (.S;,) transmission coefficients and the am-
plitudes of the S parameters are obtained. Figs. 12 and 13
show, respectively, the differential phase shift and the
magnitude of reflection coefficient as a function of
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TABLE II
NORMALIZED RESISTANCES R, R,, NORMALIZED REACTANCES X,, X,
AND NORMALIZED TOTAL POWER P FOR A PERFECTLY CONDUCTING PoOST
BY THE FINITE-ELEMENT METHOD AND THE BOUNDARY-ELEMENT METHOD
(r/d=10.05 A/d=14)

METHOD Ra Xa Ry Xo P
FEM -0.29x10"% | 0.19027 0.00002 | -0.04738 0.99991
BEM -0.40x10°%} 0.19026 | -0.00013 | -0.04697 1.00052

TABLE III
MEMORY aAND CPU TIME
METHOD | MEMORY (Mbyte) | CPU TIME (s)
CFBEM 6.62 2.10
FEM 26.76 23.22
BEM 2.11 5.84

-
— ——
TE, o TE, ¢
d
I Iz
IR © H
Ya
-
z x Io

Fig 11 Ferrite slab in a rectangular waveguide.

frequency, where ferrite is TT1-2800, H,=1.2x10°A/m,
d=15799 mm, § =0.7 mm, /=20 mm, and the slab is
assumed to be loaded parallel to the wall and 0.7 mm
distant from the wall in Fig. 11.

Our results and the experimental ones of Uher er al. [15]
are shown by the solid and the X signs in Figs. 12 and 13,
respectively. Both A¢’s agree well at f >16 GHz, as do the
[Syis at f>16.5 GHz, but the frequencies where the |S},['s
take minima are different from each other.

The longer ferrite slab is dealt with, the larger the
discontinuity region becomes. So that it gets more and
more difficult to analyze the discontinuity region by only
the FEM, because the FEM needs large memory for com-
putation. On the other hand, the CFBEM does not need so
much memory for computation, since here the FEM is
applied only to the region with ferrite. For example, the
computer memory required to analyze a ferrite slab (/=20
mm) in a rectangular waveguide is about 7.5 Mbyte with
the CFBEM, while it is a few hundred Mbyte with FEM
only. So the differential phase shift A¢ and the magnitude
of the reflection coefficient |S},;| versus variations in the
length of ferrite slab can be computed easily by the
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Fig. 13. Reflection coefficient in decibels versus frequency (a; =0.7

mm, d, = 0.7 mm, 6 = 0.7 mm, /= 20 mm).

CFBEM. The results are shown, respectively, in Figs. 14
and 15, where g, = 0.7 mm, a, = 0.7 mm, and § =0.7 mm
in Fig. 11. As the ferrite slab is longer along the wall, more
peaks of | S| are seen in Fig. 15. And Table IV shows the
differential phase shift by the length of a unit at /=10, 20,
30, and 40 mm.

Moreover the differential phase shift obtained by a
transcendental equation involving the propagation con-
stants B., B_ [24] is also shown in Table IV, where
magnetic losses are neglected and ferrite is assumed to be
infinitely long parallel to the wall, 0.7 mm distant from the
wall and 8§ =0.7 mm. Here let A¢ be (B8, —~B_). The
propagation constants are difficult to obtain at f<12.26
GHz because the transcendental equation has complex as
well as real coefficients at f <12.26 GHz in this case. And
four propagation constants, i.e., two 8.’s and two B_’s,
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Fig. 14. Differential phase shift in degrees versus variation of length of

ferrite slab (4, = 0.7 mm, a, = 0.7 mm, & = 0.7 mm).
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Fig. 15. Reflection coefficient in decibels versus variation of length of

ferrite slab (@, = 0.7 mm, a, = 0.7 mm, § = 0.7 mm).

are obtained at frequency f >16.36 GHz (modal coupling
can be clearly seen at f>16.7 GHz in Fig. 12). In Table
1V, as the ferrite slab is longer, the differential phase shift
by the length of a unit seems to come near to the one
obtained by a transcendental equation.

In the case where the ferrite slab is not loaded parallel to
the wall, F. Arndt, J. Uher, et al. will treat the ferrite slab
as a linearly tapered structure, which is approximated by a
stepped transition with a hundred steps at each side [12].
So their method is difficult to apply to problems with
variations in the angle of the ferrite sldb to the wall. The
CFBEM can be effectively applied even to problems with
variations of the location of the ferrite slab. So the dif-
ferential phase shift A¢ and the magnitude of the reflec-
tion coefficient |S;,|.versus the location of the ferrite slab
as shown in Fig. 11 are obtained and shown in Figs. 16
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TABLE 1V
DIFFERENTIAL PHASE SHIFT BY THE LENGTH OF A UNIT
VERSUS FREQUENCY
frequency B.—B- Ao/l (deg/mm): £ is length of ferrite slab
(GHz) (deg/mm) 2=10 £=20 £=30 £=40
11 0.65072 0.61572 0.60390 0.60176
12 0.62567 0.62793 0.62928 0. 63350
12. 2659 0.64204 0.62435 0.63510 0.63934 0. 64507
13 0.69947 0.63302 0.66687 0.67876 0. 68869
14 0.81543 0.68117 0.75092 0.77300 0.78811
15 1.00947 0.80168 0.92185 0. 95028 0.97296
16 1.34641 1.12516 1.32253 1.30771 1.33855
16. 3581 1.52222 1.40329 1.64663 1.53181 1.60977
17 3.46521 1.52196 2.13124 1.57972
100 ]
90 a1=az=0.7 mm |
god T a;=az=0.6 mm I‘
== a,=0.7 mm, az=0.6 mm I
70 i
‘
60 7 /
o 3
< 50
40 7
30 1
20 1
10 7
0

12 13 14 15 16 17 18
frequency (GHz)

Fig. 16. Differential phase shift in degrees versus variation of location

of ferrite slab (8 = 0.7 mm, / =20 mm).

and 17, respectively, where § = 0.7 mm and /=20 mm in
Fig. 11. These figures exhibit considerable differences in
A¢’s and |S};['s on variations of the location of ferrite.

V. CONCLUSIONS

A combined method of the finite and boundary ele-
ments is formulated for the analysis of H-plane waveguide
junction with arbitrary cross sections where the junction 18
loaded with dielectric or ferrite of arbitrary shape, size,
and location. The waveguide junction is divided into two
regions. One is the inhomogeneous region with dielectric
or ferrite, and the other is the homogeneous region without
diclectric or ferrite. The finite-element and the boundary-
element methods are applied to the inhomogeneous and
the homogeneous regions, respectively. Discontinuity prob-
lems with large homogeneous region or with variations of
the location of inhomogeneous region can be effectively
treated by this method. To show the validity and useful-
ness of the method, a lossy dielectric post in a rectangular
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Fig. 17. Reflection coefficient in decibels versus variation of location of

ferrite slab (8 = 0.7 mm, / = 20 mm).

waveguide and a ferrite-slab-loaded waveguide nonrecipro-
cal phase shifter are investigated.
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