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Abstract —A new numerical method is formulated for the analysis of

H-plane waveguide junctions with arbitrary cross sections. The junctions

are loaded with arbitrarily shaped dielectric or ferrite. The method is a

combination of the finite-element method and the boundary-element

method where the finite-element method and the boundary-element method

are applied to the regions with and without dielectric or ferrite, respec-

tively. To show the validity and usefulness of the method, a Iossy dielectric

post and a ferrite slab in a rectangular wavegnide are investigated in detaii,

and the computed results are compared with earlier theoretical and experi-

mental results.

I. INTRODUCTION

A SIGNIFICANT number of studies on scattering by

the obstacles in a waveguide have been reported for

many years. Marcuvitz’s Waveguide EIandbook [1] de-

scribes the equivalent circuit parameters for inductive ob-

stacles and dielectric posts in a rectangular waveguide.

Leviatan, Li et al. [2], [3], and Auda and Barrington [4]

have studied inductive posts and diaphragms in a rectan-

gular waveguide by the moment method. Vahldieck et al.

[5] have given the design for a metal insert filter by the

method of field expansion into eigenmodes.

Nielsen [6] by the modal expansion method, Araneta [7]

by adding one more terms in the variational expressions

given by Schwinger, and Sahalos and Vafiadis [8] by a

method similar to Nielsen’s [6] “using not a rectangular

interaction region but a circular one have dealt with the

discontinuity problem of a circular cylindrical dielectric

post centered in a rectangular waveguide. Hsu and Auda

[9] and Leviatan and Sheaffer [10]’ have by the moment

method given analyses of homogeneous dielectric posts of

arbitrary shape, size, location, and number, lossy as well as

lossless in a rectangular waveguide. Arndt et al. [11], [12]

have designed dielectric-slab-filled waveguide phase shifters

by the method of field expansion into eigenmodes.

Davies [13] has by the modal expansion method pro-

posed an analysis for a symmetrical waveguide junction

circulator with a circular ferrite post. Okamoto [14] has by

the method based on integral equations analyzed wave-

guide junctions with arbitrarily shaped ferrite posts. Uher
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et al. [15] have designed ferrite-slab-loaded waveguide non-

reciprocal phase shifters by the method of field expansion

into eigenmodes.

Recently, Koshiba et al. [16], [17], Webb and Parihar

[18], and Lee and Cendes [19] have by the finite-element

method (FEM) analysed the H-plane waveguide junctions.

The FEM is very useful for arbitrarily shaped discontinui-

ties including inhomogeneous and anisotropic media.

However, it requires large computer memory and long

computation time to solve the final matrix equation. More

recently, Kagami and Fukai [20]. and Koshiba and Suzuki

[21] have by the boundary-element method (BEM) artalysed

H-plane waveguide junctions. The BEM is one of the

“boundary” type methods based on the integral equation

method. It is therefore possible to reduce the matrix di-

mension and to use computer memory more economically

compared with a “domain” t~ype method, such as the

FEM. However, the BEM cannot be effectively applied to

a problem involving inhomogeneous and anisotropic media.
This paper presents a new combination of numerical

methods for the solution of scattering of H-plane wave-

guide junctions with arbitrary cross sections where junc-

tions are allowed to be loaded with dielectric or ferrite of

arbitrary shape, size, and locaticn, lossy as well as lossless.

This approach is a combination of the finite and boundary

element methods (CFBEM). The waveguide junction is

divided into two regions. One is the inhomogeneous region

with dielectric or ferrite, and the other is the homogeneous

region without dielectric or fern~te. The finite-element and

boundary-element methods are applied to the inhomoge-

neous and homogeneous regions, respectively. The finite-

element can be combined with the boundary-element on

the common nodal points because these two methods are

discretized in the same way. Also, analytical solutions are

used for the uniform waveguides connected to the junc-

tions.

Discontinuity problems with a large homogeneous re-

gion or with variations of the location of an inhomoge-

neous region can be efficiently treated by the CFBEM, To

show the validity and usefulness of this method, a lossy

dielectric post and a ferrite slab in a rectangular waveguide

are investigated in detail, and the computed results are

compared with earlier theoretical and experimental results.
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Fig. 1. H-plane waveguide Junction.

Mei [22] has proposed a unimoment method in which

the finite-difference or finite-element method is used to-

gether with integral equations or harmonic expansions.

However, it seems that this method has not been fully

applied to waveguide junctions with inhomogeneous and

anisotropic media.

II. BASIC EQUATIONS

We consider the waveguide junction shown in Fig. 1.

Here the boundary I’i connects the discontinuities to the

rectangular waveguide i( i =1, 2), d, is the width of the

waveguide for the H-plane junction, I’d encloses the dielec-

tric or ferrite region 08, the region Qti is the one sur-

rounded by 171,I’z, I’(, and the short-circuit boundary rO,

and the region surrounded by 1’1, rz, and 170encloses the

waveguide discontinuities completely. Besides, the dielec-

tric or ferrite is assumed to be of full height and to be

uniform along the z axis.

For a dc magnetic field HO in the z direction, the

permeability tensor for ferrite takes on the form [17]

[“l

o
[P] ‘/Jo J: ‘PJ o (1)

001

where

(k)o+j(Ja)LJm
~=1+

(Uo+ jo-w)’– u’
(2)

a am
~=—

(O.+ jtia)’- 02
(3)

coo= yllo (4)

am = ylll, /p. (5)

a!= yAH/2LJ. (6)

Here @ is the angular frequency, PO is the permeability of

free space, M, is the saturation magnetization, AH is the

resonance linewidth, and y is the gyromagnetic ratio. A

time dependence exp ( jat) is assumed.

Considering the excitation by the dominant TEIO mode,

we have the following basic eauations for the field E_. H...

1 3 2
●+(

+1 f=o L$l
Fig. 2. Quadratic line element.

and H.v because the fields do not vary with the z axis [17]:

13HY 8HX
— = jufo~Ez

ax – ay
(7)

1

{

i3EZ
—+j~

)
~ (8)

‘x=j~po(p’– ~’) ‘v ~J)

1

(- -

aEz aEz

‘J’=j~po(~2-K2) p dX + ‘K ay }
(9)

where

Here to is the permittivity of free space and c is the

relative permittivit y.

III. MATHEMATICAL FORMULATION

A. Boundary-Element Approach for QA

For ( =1, p =1, and K = O in the region QA, from

(7)-(9) we obtain the following Helmholtz equation:

(:+:)”+’’”=O(11)

where $ is E= and k; = @’CoKo.

Applying the boundary-element method with the qua-

dratic line element shown in Fig. 2 to the region fl~, the

following matrix equation is obtained [20], [21]:

[[H]l [H]2 [H]. [H]o] ::~;

1{+}
A
o

r

1I== [[d, [G12 [Glo [Glo] ~;~; (12)

{+}:

where + is aEz /a n, Le., the outward normal derivative of

E=, and the subscripts 1, 2, O’, and O denote the quantities

corresponding to the boundaries I_’l, rz, r~, and I’. in

Fig. 1, respectively.

B. Finite-Element Approach for $?~

Dividing the region fl~ into a number of element subdo-

mains fle’s as shown in Fig. 3, using a Galerkin procedure

on (7) over the element Q,, and considering the contribu-
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Fig. 3. Quadratic triangular element.

tion of all elements, we obtain the following

tion [16]–[19]:

[A]{@ }B=[B]o{+}:/

[A1=ZJJ+[P({NX} {NX}’+ {N,
e

+j.({Nx} {Aj}T-{Aj}{Nx}~)

–k&{N}{N}’]dxdy

[B]or=~J{N}{iv}’dr

e’ e’

matrix equa-

(13)

}{ N”}T]

(14)

(15)

where { N } is the shape function vector, { NX } =

d {N }/Ox, {NY} - 6’{ N }/dy, T denotes a transpose,

JJ. dxdy is carried over the element subdomain 0., Je,dr

is carried over the element contour r: on r~, and X, and

X=, extend over all elements 0.’s and the elements related

to r(, respectively.

Equation (13) may be rewritten as follows:

where [A] O,O,,.. ., [A],,,, are the submatrices of [A], and

{O} is a null vector. The components of the {@};, vector

are the values of the electric field E, at nodal points on the

boundary rJ, and the components of the {@}? vector are

the values of E= at nodal points in the interior region

except the boundary r( from the region fl~.

Eliminating {@} fl from (16), we obtain the following

equation:

C. Ana@ical Approach for the Waueguides

Assuming that the dominant TEIO mode of unit ampli-

tude is incident from waveguide j( j = 1, 2) in Fig. 1,

0( ~ E,) on r,(i = 1, 2) may be expressed analytically as
[21]

+(.x (1)=(), ~(1))

= m,fdw) - ; * JdL(Y@)f JYc!l))

.+(x(’) =0, yp) U!yJJ) (19)

where

f,m(Y(’))= ~ sin m77y(’)/dZ, m=l,2,3, . . . (20)

l%.,= {ki - (mn/d,)2, m=l,2,3, . . . (21)

and 8,, is the Kronecker delta function.

Equation (19) can be discretized as follows:

where

{f}, =z{fl}[ (23)

.{ N(x(’)= O,y~i))}~dy$). (24)

Here the components of the { f~ }, vector are the values of

fi~(y(z)) at the nodal points on r,, and Z@, extends over
the elements related to 17,.

D. Combination of Finite and Bo~mdary Elements

On the short-circuit boundary rO, the electric-field com-

ponent @ parallel to it vanishes, so that the following

boundary condition is taken:

{0}6’= {0} on r,. (25)

The continuity conditions of @ and its outward normal

derivative $ at the interface I’d between regions QA and

ti~ are expressed as

{0};={ 0}: {+}(=’-{4’}:’ Onri (26)

where the minus sign of + oripjnates from the outward

normal direction of the adjacent two regions opposite each

other.

Using (26), (17) may be expressed as

[Alo{@}:+[~ lo{.4}(, = {0}. (27)

Considering (25), from (12) wc obtain

[1{0}:
[[H], [H], [H]o] {@}<

{+}:

11-[[G]l [G]2 [G]. [G]O] ;;~: = {O}. (28)

{+}:
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Fig. 4. Dielectric post in a rectangular waveguide

From (22), (27), and (28) we obtain the following final

matrix equation:

[ I

Y.zO

x. d/2-O X= d/2+0

Fig. 5. Eqmvalent circuit for dielectric post in a rectangular waveguide.

equivalent circuit parameters are determined as follows [2]:

Z12 2s4

20 = (l-s{l- s;l)(l-s(, +s;,)

I
[1] [0] [0] -[z],

[0] [1] [0] [0]

[0] [0] [A]. [0]

[H]l [H], [H]. -[G],

[0]

-[2]2

[0]
-[G],

[0] [0]
[0] [0]

[B]o. [0]

-[G], -[G],

where [1] is the unit matrix and [0] is the null matrix.

The values of @ at nodal points on r,, i.e., {@ }Z, are

computed from (29), and then +(x [’) = O, y(’)) on r, can

be calculated. The solutions on 171allow the determination

of the scattering parameters S,J of the TEIO mode as

follows [21]:

s,, = J?+(N=o, y(’~)jl(y(’)) (2’’(’)–1
o

IV. NUMERICAL I@ULTS

(30)

i #j. (31)

A lossy dielectric post in a rectangular waveguide as

shown in Fig. 4 is investigated first, where d is the width

of the rectangular waveguide and r is the radius of the

cylindrical post.

The equivalent circuit for a post in a rectangular wave-

guide in which only the dominant TEIO mode can propa-

gate unattenuated is the T network shown in Fig. 5, where

20 is the characteristic impedance of the TEIO mode.

Let S{l and SJ be the reflection and transmission

coefficients of the dominant mode evaluated at the refer-

ence plane T (x = d/2 in Fig. 4), respectively. Then the

[{+}
A
o

I
hJ{f}l

_ ~z,{f}z
—

{o}

{o}

(29)

Moreover the equivalent circuit parameters are repre-

sented by the resistances and reactance as follows:

Z12/Zo = R. + jX~

(%- .%)/.% = R~ + jL

where R ~ and R ~ are the normalized shunt and series

resistances, and X. and X~ are the normalized shunt and

series reactance, respectively.

Now we take the example given by Leviatan et al. [10],

which computes the equivalent circuit parameters as a

function of c“ for a centered lossy post of r/d= 0.05, with

c’ = 4.0 at A/d = 1.4 (A = 2T/ko). Two limiting cases, i.e.,
c“ ~ O and c“ + cc, correspond to the ones for the lossless

post and the perfectly conducting post, respectively. Here

a regular polygon with 24 sides, the area of which is equal

to that of the circle, is used instead of the circle.

Figs. 6 and 7 show the normalized shunt and series

resistances versus 6”, respectively. Figs. 8 and 9 show the

normalized shunt and series react antes versus c”, respec-

tively. Fig. 10 shows the normalized total power P, i.e.,

1S1112+ 1S2112,versus E“. Our results and Leviatan’s are

shown by, respectively, the solid and the broken lines in

these figures. Leviatan’s results show the sudden change in

the magnitude of each of the resistances and reactance at

C“ = 19.5, where post losses appear to have reached a peak,

and at c” = 60 their results already approach the ones for
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Fig. 6. Normalized shunt resistance RU versus c“.
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Fig. 7. Normalized series resistance Rfi versus c’(

the perfectly conducting post [1], i.e.,

R.=0 Rb=O

xa=o.190 xb=–o.047

Moreover, their Rb has negative values at 19.5 <(’’<50

although the resistor Rb should never have a negative

resistance [23]. On the other hand, all of our results have

no rapid changes. Some negative values for our Rb appear

in Table I. This is because the total power obtained by the

CFBEM becomes more than unity. Since the energy error

is less than 0.06 percent, computation error seems to cause

negative values for Rb. Table I shows that our results reach

0,
,----

–1;

-2:

-3

L

— Present analysis

---- Leviatan and Sheaffer

–4

1347
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Fig. 8. Normalized shunt reactance Xa versus c“.
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Fig. 9. Normalized series reactance X,, versus c”.

the ones for the perfectly conducting post at c“ >106 and

that post losses are the greatest al C“ = 18.4.

Marcuvitz’s results [1] for the perfectly conducting post

of the same volume and location as the lossy dielectric post

are compared with the results obtained by the FEM or the

BEM, which are shown in Table 1[1.Our results agree well

with Marcuvitz’s.

From the fact described above, we may expect that our

results are more reasonable than Leviatan’s [10].

The computer memory and the CPU time required to

analyze a lossy dielectric post in a rectangular waveguide

are shown in Table III. All results obtained by the CFBEM,
the FEM, and the BEM are fully convergent.
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Fig. 10. Normahzed total power versus c“,

TABLE I
NORMALIZED RESISTANCES R., Rh, NORMALIZED REACTANCE X., Xl,,

AND NORMALIZED TOTAL POWER P VERSUS c“ (r/d= 0.05, A/d= 1.4,
6’=4,0)

E’:

o
2.9
3.0

3.1

11.0

12.0

18.0

18.4

19.0

20.0

21.0

110.0

116.0

120.0

500.0

1000.0

10000.0

100000.0

1000000.0

4000000.0

10000000.0

100000000.0

-0.00003
J.70864
1.70962

1.70869

0.86774

0.80428

0.55411

0.54268
0.52637

0.50121

0.47829

0.09762

Q.09336

0.09079

0.03692

0.02474

0.00770

0.00233

0.00026

0.00006

0.00003

0.00000

x.

-3.18718

-1.53542

-1.47748

-1.42144
-0.00438

0.03123
0.14014

0.14403
0.14942

0.15739

0.16428

0.23384

0.23410

0.23423

0.22020

0.21173

0.19709
0.19091
0.19027
0.19026
0.19026
0.19026

-0.00014
0.00082
0.00086
0.00089
0.00347
0.00379
0.00567
0.00579
0.00598
0.00628
0.00658
0.01831
0.01833
0.01832
0.01099
0.00806
0.00284
0.00082

-0.00003
-0.00011
-0.00013
-0.00014

0.00125

0.00123

0.00123

0.00123
0.00090

0.00083
0.00031

0.00027

0.00021

0.00010

-0.00002

-0.01649

-0.01742

-0.01801

-0.03423

-0.03795
-0.04413

-0.04669
-0.04697
-0.04697
-0.04697

-0.04697

P

1.00029

0.76215
0.75626

0.75049
0.52950

0.52022
0.49887

0.49881

0.49892

0.49960

0.50081

0.70991

0.71692

0.72130

0.85207
0.89332
0.96291

0.98864
0.99919

1.00019
1.00039

1.00051

Second, ferrite-loaded waveguide nonreciprocal phase

shifters are investigated. Nonreciprocal phase shift maybe

realized in a rectangular waveguide by placing a ferrite

slab magnetized by a dc magnetic field HO as shown in
Fig. 11. Differential phase shift (A@= arg Szl–arg &2)

and low V,SWR are important to characterize the nonre-

ciprocal phase shifter, so that phases of the forward (Szl)

and backward ( Slz ) transmission coefficients and the am-

plitudes of the S parameters are obtained. Figs. 12 and 13

show, respectively, the differential phase shift and the

magnitude of reflection coefficient as a function of

TABLE II
NORMALIZED RESISTANCES R., Rh, NORMALIZED REACTANCE X., X,,,

AND NORMALIZED TOTAL POWER P FOR A PERFECTLY CONDUCTING POST

BY THE FINITE-ELEMENT METHOD AND THE BOLTNDARY-ELEMENT METHOD

(r/d = 0.05, A/d =1.4)

METHoo R. 1. Rtj x. P

F’EM -O. 29x10-’ 0.19027 0.00002 -0.04738 0.99991

BFM -O.4OX1O-’ 0.19026 -0.00013 -0.04697 1.00052

TABLE III

MEMORY AND CPU TIME

METHOD MEMORY (Mbyte) CPU TIME (S)

CFBEM 6.62 2.10

FEM 26.76 23.22

BEM 2.11 5.84

Zx G

Fig 11 Ferrite slab in a rectangular wavegmde,

frequency, where ferrite is TT1-2800, HO= 1.2X 105 A/m,

d = 15.799 mm, 8 = 0.7 mm, 1=20 mm, and the slab is

assumed to be loaded parallel to the wall and 0.7 mm

distant from the wall in Fig. 11.

Our results and the experimental ones of Uher et al. [15]

are shown by the solid and the X signs in Figs. 12 and 13,

respectively. Both &#I’s agree well at ~ >16 GHz, as do the

lSlll’s at ~ >16.5 GHz, but the frequencies where the lS,ll’s

take minima are different from each other.

The longer ferrite slab is dealt with, the larger the

discontinuity region becomes. So that it gets more and

more difficult to analyze the discontinuity region by only

the FEM, because the FEM needs large memory for com-

putation. On the other hand, the CFBEM does not need so

much memory for computation, since here the FEM is

applied only to the region with ferrite. For example, the

computer memory required to analyze a ferrite slab (1= 20

mm) in a rectangular waveguide is about 7.5 Mbyte with

the CFBEM, while it is a few hundred Mbyte with FEM

only. So the differential phase shift A@ and the magnitude

of the reflection coefficient IS’ll I versus variations in the

length of ferrite slab can be computed easily by the
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Fig. 12. Differential phase shift in degrees versus frequency (al =0.7
mm, az = 0.7 mm, 8== 0.7 mm, 1= 20 mm).
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Fig. 13. Reflection coefficient in decibels versus frequency (al =0.7

mm, az = 0.7 mm, 8== 0.7 mm, i = 20 mm).

CFBEM. The results are shown, respectively, in Figs. 14

and 15, where al = 0.7 mm, Uz = 0.7 mm, and 6 = 0.7 mm

in Fig. 11. As the ferrite slab is longer along the wall, more

peaks of lSll\ are seen in Fig. 15. And Table IV shows the

differential phase shift by the length of a unit at 1 =10, 20,

30, and 40 mm.

Moreover the differential phase shift obtained by a

transcendental equation involving the propagation con-

stants ~+, /3_ [24] is also shown in Table IV, where

magnetic losses are neglected and ferrite is assumed to be
infinitely long parallel to the wall, 0.7 mm distant from the

wall and 8 = 0.7 mm. Here let A@ be (~+ – fl _ ). The

propagation constants are difficult to obtain at ~ <12.26

GHz because the transcendental equation has complex as

well as real coefficients at ~.< 12.26 GHz in this case. And

four propagation constants, i.e., two B +‘s and two b_ ‘s,

100

90

80

70

60
*
a 50

40

30

20

10

0

-~z~!”
— Q =40 mm

!/
---- ~ =30 ~ml !:

----- Q =10 mm
~}

!?’
;!

“j,,,
‘1

,’” i,,’
.,’

.. . i’
>...”. ..- ;

. ..--.. ---”. . ------- /’,*

kL
12 /3 14 15 16 17 18

frequency (GHz)
Fig. 14. Differential phase shift in degrees versus variation of length of

ferrite slab (al = 0.7 mm, a,= 0.7 mm, 8 = 0.7 mm).

o

-lo

-20
~

-30
—
.

‘-i -40
—

-60

-60

- ?0

frequency (GI-Iz)

Fig. 15. Reflection coefficient in decibels versus variation of length of

ferrite slab (al = 0.7 mm, a~ = 0.7 mm, 8 = 0.7 mm).

are obtained at frequency ~ >16.36 GHz (modal coupling

can be clearly seen at ~ >16.7 CFHZ in Fig. 12). In Table

IV, as the ferrite slab is longer, the differential phase shift

by the length of a unit seems to come near to the one

obtained by a transcendental equation.

In the case where the ferrite slab is not loaded parallel to

the wall, F. Arndt, J. Uher, et al. will treat the ferrite slab

as a linearly tapered structure, which is approximated by a

stepped transition with a hundred steps at each side [12].

So their method is difficult to apply to problems with
variations in the angle of the ferrite slab to the wall. The

CFBEM can be effectively applied even to problems with

variations of the location of the ferrite slab. So the dif-

ferential phase shift Arjr and the magnitude of the reflec-

tion coefficient [Slll versus the location of the ferrite slab

as shown in Fig. 11 are obtained and shown in Figs. 16
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TABLE IV
DIFFERENTIAL PHASE SHIFT BY THE LENGTH OF A UNIT

frequency

(Gtfz)

11

12

12.2659

13

14

15

16

16.3581

17

100

90

80

70

60

2 50

40

30

20

to

o

5. –6-

(deg.hn)

0.64204

0.69947

0.81543

1.00947

1.34641

1.52222

. .
VERSUS FREQUENCY

A o/1 (dw’m) : Q is lenath of femte slab

Q=1O Q =20 Q =30

0.65072 0.61572 0.60390

0.62567 0.62193 0.62928

0.62435 0.63510 0.63934

0.63302 0.66687 0.67876

0.68117 0.75092 0.77300

0.80168 0.92185 0.95028

1.12516 1.32253 1.30771

1.40329 1.64663 1.53181

3.46521 1.52196 2.13124

Q =40

0.60176

0.63350

0.64507

0.68869

0.78911

0.97296

1.33855

1.60977

1.57972

al=az=0.7 mm

..—.- CI]’O.7 mm, aZ=O.6 m

12 13 14 15 16 1’7 18

frequency (GHz)

Fig. 16. Differential phase shift in degrees versus variation of location
of ferrite slab (8 = 0.7 mm, 1= 20 mm).

and 17, respectively, where 8 = 0.7 mm and 1= 20 mm in

Fig. 11. These figures exhibit considerable differences in

A+’s and ISill’s on variations of the location of ferrite.

V. CONCLUSIONS

A combined method of the finite and boundary ele-

ments is formulated for the analysis of H-plane waveguide

junction with arbitrary cross sections where the junction is

loaded with dielectric or ferrite of arbitrary shape, size,

and location. The waveguide junction is divided into two

regions. One is the inhomogeneous region with dielectric

or ferrite, and the other is the homogeneous region without

dielectric or ferrite. The finite-element and the boundary-

element methods are applied to the inhomogeneous and

the homogeneous regions, respectively. Discontinuity prob-

lems with large homogeneous region or with variations of

the location of inhomogeneous region can be effectively

treated by this method. To show the validity and useful-

ness of the method, a lossy dielectric post in a rectangular

o

-lo

-50

11 12 13 14 15 16 17’ 18 /9

frequency (GHz)

Fig. 17. Reflection coefficient in decibels versus variation of location of
ferrite slab (8= 0.7 mm, I = 20 mm).

waveguide and a ferrite-slab-loaded waveguide nonrecipro-

cal phase shifter are investigated.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

REFERENCE5

N. Marcuvitz, Ed., Wavegtade Handbook. New York: McGraw-
Hill, 1951.

Y. Leviatan, P. G Li, A. T. Adams, and J. Perini, “Single-post

inductive obstacle in rectangular waveguide,” IEEE Tran$. M~cro-

wave ‘J7temy Tech., vol. MTT-31, pp 806–811, Oct. 1983.

P. G Li, A. T. Adams, Y. Leviatan, and J. Perini, “Multiple-post
inductive obstacle in rectangular waveguide,” IEEE Tram. Mw-cr-

waoe Theoiy Tech., vol. MTT-32, pp. 365–373, Apr. 1984.
H. Auda and R. F. Barrington, “Inductive posts and diaphragms
of arbitrary shape and number in a rectangular waveguide,” IEEE

Trans. Mwrowaoe Theory Tech.. vol MTT-32, pp 606-613, June
1984.
R. Vahldieck, J. Bornemann, F. Arndt, and D. Grauerholz, “ W-band
low-insertion-loss E-plane filter,” IEEE Trans. Mlcrowute Tbeo<v
Tech., vol. MTT-32, pp. 133-135, Jam 19X4.

E. D. Nielsen, “Scattering by a cyhndrlcal post of complex permit-

tlvity in a waveguide,” IEEE Trans. Microwave Theory Tech,, vol.

MTT-17, pp. 148-153, Mar. 1969.

J. C Araneta, M. E Brodwm, and G. A. Kriegsmann, “ High-tem-

perature microwave characterization of dielectric rods,” IEEE
Trans. Mlcrowaue Theory Tech., vol MTT-32, pp. 1328–1335, Oct.
1984.

J. N. Sahalos and E. Vafiadis, ‘cOn the narrow-band microwave
filter design using a dielectric rod,” IEEE Trans. Microwate Tbeoty
Tech , vol. MTT-33, pp. 1165-1171. Nov. 1985
C. G. Hsu and H. A. Auda, “Multiple dielectric posts m a rectan-
gular waveguide~’ IEEE Trans. Mwrowaoe Theory Tech,, vol.
MTT-34, pp. 883–891, Aug. 1986,
Y. Leviatan and G. S. Sheaffer, “’Analysls of inducuve dielectric

posts in rectangular waveguide,” IEEE Trans. M~crowacle Theo~v
Tech., vol. MT”l-35, pp. 48-59, Jan. 1987.
F. Arndt, J. Bornemann, and R. Vahldieck, “Design of multisection
impedance-matched dielectric-slab filled wavegmde phase shtfters,”

IEEE Trans. Mlcrowaoe Theory Tech , vol. MTT-32, pp. 34–38,

Jan. 1984.
F. Arndt, A. Frye, M Wellnitz, and R. Wirsing, “Double
dielectric-slab-filled waveguide phase shifter,” IEEE Tram. MIcro-
waue Theory Tech., vol. MTT-33, pp 373–381, May 1985.
J. B. Davies, “An analysis of the m-port symmetrical H-plane
wavegmde Junction with central ferrite post,” IRE Trans. A4tcro-
waoe Theory Tech , vol. MTT-10, pp. 596–604, Nov. 1962.
N. Okamoto, “Computer-aided design of H-plane wavegulde Junc-

tions with full-height ferrltes of arbitrag shape,” IEEE Trans.
Microwave Theorv Tech,, vol MTT-27, pp 315-321, Apr. 1979,



lSE AND KOSHIBA : NUMERICAL ANALYSIS OF H-PLANE WAVEGUIDE JUNCTIONS

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

J. Uher, F. Amdt, and J. Bornemamn, “Field theory design of

ferrite-loaded waveguide nonreciprocal phase shifters with multi-
section ferrite or dielectric slab impedance transformers,” IEEE

Trans. Microwave Theory Tech., vol. MTT-35, pp. 552-559, June

1987.

M. Koshiba, M. Sate, and M. Suzuki, “Finite-element anafysis of

arbitrarily shaped H-plane waveguide discontinuities,” Trans. Inst.

Electron. Commun. Eng. Japan, vol. E66, pp. 82-87, Feb. 1983.

M. Koshiba and M. Suzuki, “Finite-element analysis of H-plane

waveguide junction with arbitrarily shaped ferrite post,” IEEE
Tram. Microwaoe Theoiy Tech., vol. MTT34, pp. 103-109, Jan.

1986.
J. P. Webb and S. Parihar, “ Finite element analysis of H-plane
rectangular waveguide problems,” Proc. Inst. Elec. Eng., pt. H, vol.
133, pp. 91-94, Apr. 1986.
J. Lee and Z. J. Cendes, “An adaptive spectral response modeling
procedure for multipost microwave circuits,” IEEE Trans. Micro-

wave Theory Tech., vol. MTT-35, pp. 1240–1247, Dec. 1987.

S. Kagami and I. Fukai, “Application of boundary-element method

to electromagnetic field problerns~ IEEE Trans. Microwaue Theo~
Tech., vol. MTT-32, pp. 455-461, Apr. 1984.

M. Koshiba and M. Suzuki, “Application of the boundary-element

method to waveguide discontinuities,” IEEE Trans. Microwave

Theory Tech., vol. MTT-34, pp. 301-307, Feb. 1986.
K. K. Mei, “Unimoment method of solving antenna and scattering
problems: IEEE Trans. Antennas Propagat., vol. AP-22, pp.

760-766, Nov. 1974.

C. G. Hsu and H. A. Auda, “on the realizability of the impedance
matrix for lossy dielectric posts in a rectangular waveguide,” IEEE

Trans. Microwave Theory Tech., vol. MT”l-36, pp. 763-765, Apr.
1988.

B. K. J. Lax, K. Button, and L. M. Roth, “Ferrite phase shifters in
rectangular wave guide:’ .J. AppL FVys., vol. 25, pp. 1413-1421,

1954.

-.
crowave field theory,

1351

Kiyoshi Ise was born in Kinosaki, Japan, on
April 7, 1954. He received the B.S. and M.S.

degrees in electronic engineering from Hokkaido
University, Sapporo, Japan, in 1986 and 1988,

respectively. He is presently studying toward the

Ph.D. degree in electronic engineering at Hok-

kaido University.

Mr. Ise is a member of the Institute of Elec-
tronics, Information and Communication En-
gineers (IEICE).

Masanori Koshiba (SM84) was born in Sapporo,
Japan, on November 23, 1948. He received the
B. S., M. S., and Ph.D. degrees in electronic en-
gineering from Hokkaido University, Sapporo,

Japan, in 1971, 1$’73, and 1976, respectively.

In 1976, he joined the Department of Elec-

tronic Engineering, Kitarni Institute of Technol-

ogy, Kitami, Japan. From 1979 to 1987, he was
an Associate Professor of Electronic Engineering
at Hokkaido University, and in 1987 he became

a Professor. He has been engaged in, research ori
;urf ace acoustic waves, magnetostatic waves, mi-

and applications of finite-element and boundary-

<

element methods to field problems.
Dr. Koshiba is a member of the Institute of ‘Electronics, Information

and Communication Engineers (IEICE), the Institute of Television En-
gineers of Japan, the Institute of Electrical Engineers of Japan, the Japan
Society for Simulation Technology, and the Japan Society for Computa-

tional Methods in Engineering. In 1987, he was awarded the 1986 Paper
Award by the IEICE.


